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Abstract

We review the work of Evans on graphical proportional analogies, identifying the object mappings

that underlie many such comparisons. The limitations of Evans ANALOGY model are investigated.

We then establish the role of attributes (colour, shape, pattern etc) in such analogies and identify

two distinct mapping algorithms that are required by different classes of geometric analogy

problems. We identify the conditions under which the alternate algorithms are required to produce

a "best" answer. Finally, we describe a computational model (LUDI) that automatically generates

the result for a large number of geometric analogies.

Introduction

The aim of this project is to automatically produce the result of a graphical proportional analogy

(geometric analogy). These graphical proportional analogies are possibly more commonly

recognised as those that are used in human IQ tests. Geometric analogies are included in IQ tests as

they are considered to be problems in which a “high degree of intelli gence for their solution” is

required (Evans, 1967).  Any program achieving adequate results on IQ tests, may potentially pass

the Turing test.  As far as the Turing test is concerned, the program may be indistinguishable from

the human.  This raises the question of that program having "real" intelli gence, a question that has

been the subject of huge discussion since Turing introduced it.  However, Turing himself dismisses

the question ‘Can machines think?" by saying this question is "too meaningless to deserve

discussion” (in Boden, 1990), and we subscribe to this opinion.

Analogies play a central role in many cognitive processes, and so this is of great relevance

to the artificial intelli gence community. Our investigation begins with the early work of T. G. Evans

and his ANALOGY model (1967). This is a program designed to solve those proportional analogies

that are used in intelli gence tests. The program will either select one of the (supplied) candidate

answers as the correct answer, or all will be rejected identifying a false analogy (in contrast our

LUDI model actually generates the answer).
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Gentner (1983) introduced the founding research in the area of analogy, and the central role

of analogical mapping.  She derived a theory, known as the Structure Mapping Theory that includes

the assertion that analogical mappings are based on predicate structure, rather than objects as had

previously been thought.  This revolutionary assertion, coupled with her Systematicity Principle,

has formed the basis of most subsequent work in the area. In part, this project is the modification or

update of Evans’s work based on systematicity and the subsequent analogy framework.

Furthermore, we examine the role of attributes in geometric analogies, basing our solutions strategy

upon the mapping and transformation of attribute information.

Proportional Geometric Analogies

An analogy is a comparison between two domains, where one domain (the source) serves to

structure the contents of the second domain (the target).  Such comparisons are used heavily in

learning about new concepts, where the source domain provides a structuring framework for the

target. For example, we may view light through the source domain of a wave, thereby highlighting

certain properties. Alternatively, we may view light as a particle, thereby highlighting the quantum

nature of this form of radiation.

A proportional analogy is of the form A:B::C:D, where A, B & C are given and D is

derived from applying the transformation derived from A to B, to C. We read such an analogy as A

is-to B as C is-to D. Typically, the source domain (A:B) identifies some translation(s), which must

then be applied to C, yielding D. Hofstadter and Mitchell (1994) investigated proportional analogies

formed from letter strings; such as “aa:bb :: cc:?” .  More complex and ambiguous problems

include "ii jjkk:iijjll :: xxyyzz:??".  A neural network approach to proportional analogies has also

been investigated (Jani and Levine, 2000).

Geometric analogies then, are graphical proportional analogies (see figure 1), where each of

A, B and C identifies a geometric figure. (All Figures follow the same structure, with 3 boxes

containing A, B and C, each containing labelled objects). ANALOGY (Evans, 1969) is a two part

algorithm that firstly decomposes graphic images drawn on a unit square into symbolic

representations. It then uses these descriptions to identify the required solution from the five

alternatives.

Our model accepts symbolic descriptions of each domain - roughly corresponding to part 2

of ANALOGY.  Thus, in figure 1, A is represented by the following assertions: (inside(b,a),

circle(a), square(b)) while B is (above(a,b), circle(a), square(b)). C then
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might be represented as (contained-in(2,1), triangle(1), circle (2)). We require

our model to generate the required result D, from this given information.

There are a number of trivial solutions to such problems that we do not want LUDI to

generate. Firstly, the solution D might be an exact copy of B, so every problem could be solved by

creating a duplicate of B - regardless of A, C, or any transformations. Secondly, produce no answer

based on the logic that A is not identical to C, and thus no transformation can apply. Third, D is an

exact copy of C because the A:B transformation might only apply to exact duplicates of A.  Such

answers would not generally be accepted in an equivalent "human" IQ test, and we do not want

LUDI to include such simplistic interpretations of geometric analogy problems. The required

solution then is: (above(1,2), triangle(1), circle(2)).

Figure 1: A simple geometric analogy

Deriving the correct solution to the problem in Figure 1 (above) necessitates the identification of the

following inter-domain mapping: (inside:contained-in, a:1, b:2). A variety of mapping

models have been developed to identify the predicate mapping between the source and target

domain, and hence the object mapping. These models include SME (Falkenhainer, Forbus and

Gentner, 1989), ACME (Holyoak and Thagard, 1990), and IAM (Keane and Brayshaw, 1988).

Because there is usually a very high degree of structural similarity between source and target in

geometric analogies, the mapping model used by LUDI is of littl e consequence, but an incremental

model was chosen.

Evans ANALOGY program

Because the input to ANALOGY (Evans, 1967) is in the form of line drawings, the program is

divided into two parts. Part one decomposes the input figures into subfigures, and various properties

and relations between these subfigures are computed. This generates domain descriptions that are

composed of dots, straight-line segments and arcs of circles. Relations between the identified

objects are also identified, resulting in expressions like (INSIDE P2 P3) being generated.
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ANALOGY identifies possible matchings between A and B, as it does not know which

objects in A relate to which objects in B. One significant difference between ANALOGY and LUDI

is that ANALOGY does not recognise the same objects between A and B, treating these as

completely different. In contrast, LUDI knows that A and B contain the same objects - the same

labels being applied in A and B (see figure 1).

This new information, which is a new description of the input figures, is then passed along

to part two.  This new information is used to attempt to construct the best ‘rule’ that transforms

Figure A into Figure B, and Figure C into exactly one of the five candidate answers.  One of the

five possible answers can then be selected using this rule, identifying the correct answer, or

alternatively they can all be deemed false. ANALOGY identifies an object mapping between A and

B using its matchab routine, stating that "the basis for this matching is the similarity information

given as input to part 2" (Evans, 1967). In contrast, LUDI derives its matching based on the

structure of the predicate representation (Gentner, 1983).

Attributes in Geometric Analogies

Evans includes few examples of geometric analogies that include attributes, such as that depicted in

Figure 3 (Evans's Case 13). Properties of objects, such as the shaded property, are run through part

2 of ANALOGY only, ANALOGY wasn't designed to identify these properties. Little detail i s

given on how this is achieved - but a single "shaded" attribute is the only one included in his

examples. In particular, Evans does not explain how to deal with multiple attributes, nor how

attribute mappings are identified and used. We shall address this topic in detail i n the sections on

Local and Global attribute matching.

Figure 2: A Geometric Analogy involving attributes

LUDI: A Computational Model

We now emphasise the importance given to attributes in proportional analogies.  This however

contradicts Gentner’s Structure Mapping Theory, upon which the foundation of analogy structure is

based. Although our theory is essentially based on Gentner’s, this treatment of attributes

differentiates it from hers. According to Gentner (1983) “An analogy is a comparison in which

relational predicates, but few or no object attributes, can be mapped from base to target” .  We
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oppose this dismissal of attributes, and actually place great importance on attribute matching in the

derivation of geometric analogies. The attributes of the objects are obviously imperative, in order to

distinguish various features such as shape, colour, pattern etc.

We now define two concepts central to the concepts in LUDI. A mapping is a source:target

pair of concepts that forms the basis of all analogical comparisons (Gentner, 1983). A

transformation identifies a change in information between A and B, wholly within the source

domain. This transformation will l ater be applied to the target C, generating the solution D. There

are two types of transformation; relational transformation identifies how relations change between

A and B. Figure 3 uses the relational transformation (inside->below). An attribute

transformation identifies an attribute change happening to an object between A and B, in figure 2

the attribute transformation (plain->striped) is central to generating the required solution.

Firstly, we briefly describe how we identify the inter-domain mapping. This focuses on parts

A and C, as these are the only complete sections that can be placed in correspondence. We follow

the IAM (Keane et al, 1988) model and identify root predicates, which identifies mapping that are

then elaborated. As mapping in such problems is a relatively straight forward task, we shall not

dwell on it here. However, we do point out that our mappings are based on predicate structure rather

than the object similarity technique used in ANALOGY.

Figure 3: A geometric analogy requiring with attribute matching

To support the matching of attributes, LUDI uses a shallow attribute-type hierarchy. The attribute-

types supported are; shape (square…), orientation (face-up…), colour (red, white…), and

pattern (striped, plain…). LUDI allows attribute-matching only between attribute-values of the

same attribute type. Thus, in Figure 2 above, the attributes in B (grey(a) and striped(b)) will be

applied to the equivalent objects in the newly generated D. The attribute hierarchy supports objects

with multiple attributes (square, blue, striped, face-down) etc.
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Local Attribute Matching

The majority of geometric analogies can be handled by "local" attribute matching (the only attribute

matching example in Evans (1967) is of this type). By this we mean that we identify the required

attribute transformation by examining pairs of corresponding objects in isolation, and the attributes

of these objects. In figure 4, object a is transformed from grey to white, and this is identified

without reference to any other objects. This transformation rule is then applied to object 1, which is

the mapped object of a. The attribute transformation for object b is identified in a similar manner.

All examples in this section rely on this local attribute matching scheme. Indeed, in Figure 4 and

there is no "general" rule that can be applied to all i nstances of the grey attribute - highlighting the

necessity for this local matching scheme.

If there is an attribute transformation between A and B, then applying this transformation to

C requires that the mapped object in C has the same attribute as A. In figure 4, object a identifies

the rule grey(a)->white(a), which is then applied to the mapped object 1. A similar

transformation rule can be identified for object b - without reference to any other objects.

The null -transformation condition must also be handled, by identifying that an object has

the same attributes in A and B. As such, this null -transformation need not be represented explicitly.

Applying this null -transformation to the objects in C leaves them unaltered. Thus, we do not care if

null -transform attributes are the same between A and C or not. In figure 4 the shape attribute does

not change between A and B, representing a null -transformation condition. Thus, the shape attribute

in C is also left unchanged - yielding the required attribute information circle(1) and

circle(2).

Figure 4: A Simple Local attribute matching problem.

Figure 5 matches multiple attributes (colour, pattern…) between the source and target.

However, the solution can be generated by examining source:target object pairs in isolation and

dealing with the attribute transformations one-at-a-time (assuming we have the source:target

mapping).
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Figure 5: A Complex Local attribute matching problem.

Here, the mapping is (a:1, b:2, c:3), and we can deal with objects b and 2 in isolation. B is

light-grey and dotted, becoming light-grey and striped. This transformation can be applied to object

2 with a similar outcome. Obviously, all other predicate and attribute transformations are applied

generating the required solution. The important factor is that attribute transformations are identified

between isolated object pairs.

Global Attribute Matching

In contrast to local attribute matching, LUDI also solves geometric analogies relying on "global"

attribute matching. In figure 6, any attempt to generate a solution based on examining isolated pairs

of objects is doomed to failure, and (for this example) it is the pattern attribute that generates this

ambiguity. This is a direct result of both patterns of a (in A and B) and the pattern of 1 in C being

different - there is no reasonable basis for either altering, or not altering, the pattern of object 1 in

the solution.

In fact, LUDI uses this dis-similarity of attribute values between A, B and C to help it

determine whether the global or the local attribute matching algorithm should be employed for a

particular attribute type. (LUDI's global attribute matching has only been tested on problems where

a single attribute type requires the global algorithm, while all other attribute types rely on the local

matching algorithm. Because LUDI treats each attribute type independently it could handle multiple

global attributes, but this remains as future work).
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Figure 6: A Global attribute matching problem

Rather than isolating object pairs as before, LUDI isolates the "problematic" attribute type

(pattern) in the source, thereby identifying a global series of attributes and their transformation

between A and B. We call this global as it deals with all source objects simultaneously (rather than

pair-wise). This identifies the global attribute transformation (striped->plain, spotted-

>striped…), and when applied to the target generates striped(1) and plain(2) etc.

Ambiguous attribute transformations can occur between A and B, but such problems have

ambiguous answers (if any). LUDI does not make an explicit check for such non-analogies. Of

course LUDI can also differentiate between the problems (and parts thereof) that require the usual

local attribute matching algorithm, and those that require the global attribute matching algorithm.

Figure 7: Another Global Attribute Matching problem

Consider the result of applying a local attribute matching algorithm to the example in Figure

7. The source domain (A, B) identifies an attribute transformation (striped->hased) for object a.

But the analogy maps a to 1, but object 1 doesn’ t contain enough attribute information to allow us

include the attribute hashed. Thus, local attribute matching would generate two plain objects in D.

But global attribute matching algorithm allows attribute transformations to be applied that

originated from non-mapped objects. The fact that 1 (in A) and 2 (in C) have the same pattern

attributes is suff icient to allow the transformation rule to be applied. So global attribute matching

correctly generates the target; above(1,2), triangle(1), t-shaped(2), hased(2).

This abili ty to handle a completely different category of analogy greatly increases the range

of problems of that can be handled by LUDI. Furthermore, LUDI identifies that attributes can be
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dealt with by two very different strategies in geometric analogies, and this perhaps, is partly a

justification for Gentner's (partial) dismissal of attributes.

Conclusion

We examine the Evans (1967) ANALOGY model of geometric analogies, but focus on problems

that place a much greater emphasis on the attributes of objects. ANALOGY does not address the

general problem of identifying an attribute transformation. Furthermore, we require that LUDI

actually generates the solution, rather than selecting a solution from five candidate solutions. To

support such analogies we utili se a simple attribute-type hierarchy, identifying attribute

transformation is the source (A:B) only between attributes of the same type. Such transformations

are applied to the target C, generating D.

Significantly, LUDI identifies two different classes of attribute transformation, local and

global. The first can be solved by dealing with (source:target) object pairs in turn, while the other

deals with attribute types across all source objects. LUDI highlights the importance of attribute

matching in geometric analogies.
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